XY Stages
XY stage (ball screw), travel 155 x 155 mm, aperture 170 mm, rep ± 0.5 µm, load 11 kg, speed 50…
XY stage (ball screw), travel 100 x 100 mm, aperture 150 mm, rep ± 0.5 µm, load 7 kg, speed 60 mm/s
XY stage (ball screw), travel 100 x 100 mm, aperture 150 mm, rep ± 1.6 µm, load 7 kg, speed 20 mm/s
High performance XY stage (linear motor), travel 300 - 750 mm, rep ± 0.4 µm, load 49 kg, speed 1185…
XY microscopy stage (ball screw), travel 50 x 50 mm, aperture 100 mm, rep ± 0.5 µm, load 8 kg,…
XY microscopy stage (ball screw), travel 50 x 50 mm, aperture 100, rep ± 1.6 µm, load 8 kg, speed…
High-precision XY piezo stage, travel 100 x 100 mm, aperture 115 mm, rep ± 0.5 µm, load 5 kg, speed…
High-precision XY piezo stage, travel 100 x 100 mm, aperture 115 mm, rep ± 0.3 µm, load 5 kg, speed…
XY Scanning stage (ball screw), travel 50 x 50 mm, aperture 90 mm, rep ± 2.3 µm, load 5 kg, speed 3…
XY Scanning stage (ball screw), travel 50 x 50 mm, aperture 90 mm, rep ± 2.3 µm, load 5 kg, speed 3…
Almost all atmospheric standard stages are anodized with UHV lubrication for residual pressures up to 10-6 mbar and min. cleanroom class ISO 6 - or even better - available. Further stages for more demanding environments up to cleanroom class ISO 2, vacuum up to 10E-11 mbar or hard radiation you will find here:
Overview Clean Room & Vacuum XY Stages Get in touch with our technical consultant
XY stages, are basically high-precision positioning systems that are used to move objects in two dimensions (X and Y axes). They are used in a variety of applications, such as microscopy, manufacturing and automation technology. The architecture of our XY systems can be categorized into four basic concepts:
- Stacked stages (“Ritter Sport architecture”)
- Crossed linear stages (“cross architecture”)
- Inverted pyramid (“cone architecture”)
- Pyramid (“pyramid architecture”)
Most XY stages are built according to the principle of the plate stack, sometimes also called “Ritter Sport architecture”. They have a particularly compact, square design and meet the expectations of a cross table.
However, they move apart during operation and then take up more space in two dimensions around the travel distance. The overhanging of the massive plates leads to bending, which reduces accuracy. As the design rules require the guides to be longer than the lateral distance, there is unused material on the sides of the individual travel directions. This causes the stage itself to be comparatively heavy, but it provides no benefit and merely causes the cross stage to bend additionally during travel. This results in a strong positional dependency of the bending and thus of the precision.
The cross architecture is easy to implement and is created by bolting linear motion stages together in a criss-cross pattern. Movement in one direction takes place across the center footprint. Space must be reserved accordingly in this direction. The advantage is that the plates are less bulky, reducing overhangs and thus bending and the impact on precision. As there is no material spilling over the sides of the crossed individual stages, there is less warping. The space gained can be used for cable routing for the upper axis. This results in less warping depending on the position and thus in greater precision.
Microscope stages are usually constructed as an inverted pyramid, resembling a “sugar cone” in shape. Compared to other architectures, this is particularly compact, flat and light. The drives can easily be hidden under the overhanging plates, which is particularly advantageous for mobile devices. This architecture is sufficient for applications in which the load is always applied in the center, for example in hardness testing stages. However, as with the plate stack architecture, the plates move apart and then take up additional space in two dimensions around the travel range. This means that the inverse pyramid has disadvantages comparable to those of the plate stack architecture.
The fourth architecture is the strict pyramid structure, which is characterized by its large appearance and thus does not meet the usual expectations of an XY Stage. The advantage of this solution is that the plates do not move apart during operation, so that the stage always takes up the same space. The flat support of the lower plate on the base structure forms a very rigid base for the entire system. In addition, there is no unused or overhanging material on the sides. The guide carriages always run completely on rails supported by metal and the guidance ratio is always maintained. In this way, the pyramid architecture is characterized by excellent accuracy values and extremely low deviations during movement and under different loads.
Die Steinmeyer Mechatronik GmbH verwendet hauptsächlich Aluminium für die Struktur von Kreuztischen, da es die notwendige Biegesteifigkeit bietet.
Optional sind verschiedene Sondermaterialien und Oberflächen möglich. Ob eloxal gereinigt, Aluminium gereinigt blank, Bilatal oder Nickel für optimale Prozesstauglichkeit (z.B. besonders hohe Reinheitsgrade, Beständigkeit gegen Reinigung mit Chemikalien im Bereich Life Science), ob UV, DUV oder EUV (Röntgen, Gamma auf Anfrage): In speziellen Fällen kommen auch Titan für magnetfreie Systeme zum Einsatz.
Je nach Anforderung können verschiedene Antriebssysteme verwendet werden. Erkennbar ist diese als Kürzel in der Namensbezeichnung darunter:
- Geschliffene Kugelgewindetriebe oder Gleitgewindetriebe mit SM (Schrittmotor), DC-Motor (Gleichstrommotor) oder AC-Servo (Wechselstrom-Servomotor).
- Elektrodynamische Linearmotoren (eisenlos oder eisenbehaftet).
- Piezomotoren wie Piezo-Legs® oder Nanomotion®.
Als Feedback-System werden in den meisten Fällen inkrementelle Maßstäbe aus Stahl oder Zerodur® bzw. Zeromet® eingesetzt. Während dies für eine Genauigkeit im einstelligen Mikrometerbereich ausreichend ist, ist es bei Genauigkeitsforderungen unter einem Mikrometer sinnvoll, interferometrisches Positionsfeedback zu verwenden. Bei Systemen mit „open loop“, also ohne Messsystem, lässt sich nur eine Präzision im zweistelligen Mikrometerbereich erzielen; aufgrund des einfacheren Controllers und des fehlenden Messsystems ist dies aber die kostengünstigere Lösung.
Are you looking for a technical solution for your application?
Get your first 3D Design in a few days:

Katja Weißbach
Consulting
T +49 351 88585-64
E-Mail

Ronald Schulze
Consulting, Project Management & Engineering
T +49 351 88585-67
E-Mail

Francisco Samuel
Consulting &
Project Management
T +49 351 88585-85
E-Mail

Elger Matthes
Consulting, Concepts, Innovation & Engineering
T +49 351 88585-82
E-Mail

Our references